Abstract

BackgroundWhole genome amplification (WGA) promises to eliminate practical molecular genetic analysis limitations associated with genomic DNA (gDNA) quantity. We evaluated the performance of multiple displacement amplification (MDA) WGA using gDNA extracted from lymphoblastoid cell lines (N = 27) with a range of starting gDNA input of 1–200 ng into the WGA reaction. Yield and composition analysis of whole genome amplified DNA (wgaDNA) was performed using three DNA quantification methods (OD, PicoGreen® and RT-PCR). Two panels of N = 15 STR (using the AmpFlSTR® Identifiler® panel) and N = 49 SNP (TaqMan®) genotyping assays were performed on each gDNA and wgaDNA sample in duplicate. gDNA and wgaDNA masses of 1, 4 and 20 ng were used in the SNP assays to evaluate the effects of DNA mass on SNP genotyping assay performance. A total of N = 6,880 STR and N = 56,448 SNP genotype attempts provided adequate power to detect differences in STR and SNP genotyping performance between gDNA and wgaDNA, and among wgaDNA produced from a range of gDNA templates inputs.ResultsThe proportion of double-stranded wgaDNA and human-specific PCR amplifiable wgaDNA increased with increased gDNA input into the WGA reaction. Increased amounts of gDNA input into the WGA reaction improved wgaDNA genotyping performance. Genotype completion or genotype concordance rates of wgaDNA produced from all gDNA input levels were observed to be reduced compared to gDNA, although the reduction was not always statistically significant. Reduced wgaDNA genotyping performance was primarily due to the increased variance of allelic amplification, resulting in loss of heterozygosity or increased undetermined genotypes. MDA WGA produces wgaDNA from no template control samples; such samples exhibited substantial false-positive genotyping rates.ConclusionThe amount of gDNA input into the MDA WGA reaction is a critical determinant of genotyping performance of wgaDNA. At least 10 ng of lymphoblastoid gDNA input into MDA WGA is required to obtain wgaDNA TaqMan® SNP assay genotyping performance equivalent to that of gDNA. Over 100 ng of lymphoblastoid gDNA input into MDA WGA is required to obtain optimal STR genotyping performance using the AmpFlSTR® Identifiler® panel from wgaDNA equivalent to that of gDNA.

Highlights

  • Whole genome amplification (WGA) promises to eliminate practical molecular genetic analysis limitations associated with genomic DNA quantity

  • The amount of genomic DNA (gDNA) input into the multiple displacement amplification (MDA) WGA reaction is a critical determinant of genotyping performance of whole genome amplified DNA (wgaDNA)

  • DNA yield increased significantly as gDNA input increased at each level, where the proportion of the total wgaDNA represented by the RT-PCR

Read more

Summary

Introduction

Whole genome amplification (WGA) promises to eliminate practical molecular genetic analysis limitations associated with genomic DNA (gDNA) quantity. Whole genome amplification (WGA) is an in vitro procedure to amplify a genomic DNA (gDNA) sample to generate amplified DNA (wgaDNA) for further molecular genetic analyses, and has http://www.biomedcentral.com/1472-6750/5/24 been considered by some as a potential solution to the problem of limiting gDNA availability. Dean [8] and Lovmar [9] have evaluated the genotyping performance of MDA WGA using a range of genomic DNA inputs (0.3, 3, 30 and 300 ng, and 0.003, 0.03, 0.3 and 3 ng, respectively). Both authors focused attention in their evaluation of genotyping performance on genotyping wgaDNA derived from 3 ng of genomic DNA template. Lasken and Egholm [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.