Abstract
The biopotencies of pituitary gonadotropins purified from a marsupial (kangaroo), two avian (ostrich and turkey), a reptile (turtle), an amphibian (bullfrog), and two fish (sturgeon and teleost) species were examined using an in vitro rat granulosa cell bioassay for follicle-stimulating hormone (FSH). Treatment of cultured granulosa cells with increasing concentrations of gonadotropin preparations from these species resulted in dose-dependent increases in estrogen production from negligible amounts to maximal levels of approximately 2–29 ng/culture. The relative biopotencies of these FSH preparations from most potent to least potent were in the order of human > ostrich > Turkey > kangaroo > turtle > sturgeon > bullfrog > teleost with ED 50 values of human 8.7 ng/well; ostrich 10.5 ng/well; turkey 22.5 ng/well; kangaroo 58.2 ng/well; turtle 62.5 ng/well; sturgeon 260 ng/well; bullfrog 750 ng/well; teleots > 1000 ng/well. In contrast, luteinizing hormone (LH) preparations were considerably less effective for ostrich, turkey, kangaroo, turtle, and bullfrog, being six-, five-, three-, and twofold less potent than FSH preparations for the same species, demonstrating the specificity of this assay for FSH. An LH preparation from bullfrog was unable to significantly stimulate estrogen production below 500 ng/ml. Thus, the present in vitro bioassay (GAB) using rat granulosa cells provides a sensitive and specific assay for measuring FSH activities of gonadotropins from diverse mammalian and nonmammalian species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.