Abstract
A study was conducted to evaluate the effects of divergent genetic selection for residual feed intake (RFI) on nitrogen (N) metabolism and lysine utilization in growing pigs. Twenty-four gilts (body weight [BW] 66 ± 5 kg) were selected from generation nine of the low RFI (LRFI; n = 12) and high RFI (HRFI; n = 12) Iowa State University Yorkshire RFI selection lines. Six pigs from each genetic line were assigned to each of two levels of lysine intake: 70% and 100% of estimated requirements based on the potential of each genetic line for protein deposition (PD) and feed intake. For all diets, lysine was first limiting among amino acids. Using isotope tracer, N-balance, and nutrient digestibility evaluation approaches, whole-body N metabolism and the efficiency of lysine utilization were determined for each treatment group. No significant interaction effects of line and diet on dietary N or gross energy digestibility, PD, and the efficiency of lysine utilization for PD were observed. The line did not have a significant effect on PD and digestibility of dietary N and GE. An increase in lysine intake improved N retention in both lines (from 15.0 to 19.6 g/d, SE 1.44, in LRFI pigs; and from 16.9 to 19.8 g/d, SE 1.67, in HRFI pigs; P < 0.01). At the low lysine intakes and when lysine clearly limited PD, the efficiency of using available lysine intake (above maintenance requirements) for PD was 80% and 91% (SE 4.6) for the LRFI and HRFI pigs, respectively (P = 0.006). There were no significant effects of line or of the line by diet interaction on N flux, protein synthesis, and protein degradation. Lysine intake significantly increased (P < 0.05) N flux (from 119 to 150, SE 8.7 g/d), protein synthesis (from 99 to 117, SE 10.6 g of N/d), and protein degradation (from 85 to 100, SE 6.6 g of N/d). The protein synthesis-to-retention ratio tended to be higher in the LRFI line compared with the HRFI line (6.5 vs. 5.8 SE 0.62; P = 0.06), indicating a tendency for the lower efficiency of PD in this group. Collectively, these results indicate that genetic selection for low RFI is not associated with improvements in lysine utilization efficiency, protein turnover, and nutrient digestibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.