Abstract

SummaryLife cycle inventory data have multiple sources of uncertainty. These data uncertainties are often modeled using probability density functions, and in the ecoinvent database the lognormal distribution is used by default to model exchange uncertainty values. The aim of this article is to systematically measure the effect of this default distribution by changing from the lognormal to several other distribution functions and examining how this change affects the uncertainty of life cycle assessment results. Using the ecoinvent 2.2 inventory database, data uncertainty distributions are switched from the lognormal distribution to the normal, triangular, and gamma distributions. The effect of the distribution switching is assessed for both impact assessment results of individual products system, as well as comparisons between product systems. Impact assessment results are generated using 5,000 Monte Carlo iterations for each product system, using the Intergovernmental Panel on Climate Change (IPCC) 2001 (100‐year time frame) method. When comparing the lognormal distribution to the alternative default distributions, the difference in the resulting median and standard deviation values range from slight to significant, depending on the distributions used by default. However, the switch shows practically no effect on product system comparisons. Yet, impact assessment results are sensitive to how the data uncertainties are defined. In this article, we followed what we believe to be ecoinvent standard practice and preserved the “most representative” value. Practitioners should recognize that the most representative value can depart from the average of a probability distribution. Consistent default distribution choices are necessary when performing product system comparisons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call