Abstract
Wastewater treatment wetlands are aquatic systems where diverse dissolved organic matter (DOM) compositions physically interact. Complex photochemical behaviors ensue, leading to uncertainties in the prediction of indirect photodegradation rates for organic contaminants. Here, we evaluate the photosensitization ability of whole water DOM samples from a treatment wetland and wastewater treatment plant (WWTP) in North Carolina to photodegrade target pharmaceuticals. Optical characterization using ultraviolet-visible and excitation-emission matrix spectroscopy shows that wetland DOM has higher aromaticity than WWTP DOM and that WWTP secondary treatment processes increase aromaticity, overall molecular weight, and humic character of wastewater DOM. Our application of a reversed-phase HPLC method to assess DOM polarity distinctly reveals that a subset of the wetland samples possesses an abundance of hydrophobic DOM moieties. Hydroxyl radicals (˙OH) mediate the majority (>50%) of the indirect photodegradation for amoxicillin (AMX), atenolol (ATL), and 17α-ethinylestradiol (EE2), while singlet oxygen (1O2) is presumed to be solely responsible for the photodegradation of cimetidine (CME). Our findings suggest that hydrophobic interactions and improved accessibility to photogenerated reactive intermediates lead to significant increases in photosensitization efficiencies and overall indirect photodegradation rates of AMX, ATL, and EE2 for the hydrophobic wetland samples. In contrast, CME photosensitization yields are unaffected by polarity and trend positively with optical indicators of sunlight-induced DOM photobleaching and humification, suggesting that wetland processing favors faster 1O2 photogeneration. These relationships highlight the uncertainties in photosensitization yields and effects of DOM optical properties and polarity on the photochemical fate of organic contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.