Abstract

Natural dissolved organic matter (DOM) and nitrification can play an important role in biodegradation of pharmaceutically active compounds (PhACs) in aerobic zones of constructed wetlands (CWs). This study used an enrichment culture originating from CW sediment to study the effect of DOM and nitrification on aerobic biodegradation of seven PhACs. The enriched culture degraded caffeine (CAF), metoprolol (MET), naproxen (NAP), and ibuprofen (IBP) with a consistent biodegradability order of CAF>MET>NAP>IBP. Biodegradation of propranolol, carbamazepine, and diclofenac was insignificant (<15%). CAF biodegradation was inhibited by the easily biodegradable DOM. Conversely, DOM enhanced biodegradation of MET, NAP, and IBP, potentially by contributing more biomass capable of degrading PhACs. Nitrification enhanced biodegradation of NAP and IBP and mineralization of the PhAC mixture as well as less biodegradable DOM, which may result from co-metabolism of ammonia oxidizing bacteria or enhanced heterotrophic microbial activity under nitrification. MET biodegradation was inhibited in the presence of nitrification. DOM and nitrification effects on PhAC biodegradation in CWs gained from this study can be used in strategies to improve CW operation, namely: designing hydraulic retention times based on the biodegradability order of specific PhACs; applying DOM amendment; and introducing consistent ammonium streams to increase removal of PhACs of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.