Abstract

The dissolution behavior of hydroxyapatite (HA) and its effect on the initial cellular response is of both fundamental and clinical importance. In this study, plasma-sprayed HA coatings were characterized by X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Calcium (Ca) and inorganic phosphorous (Pi) ions released from plasma-sprayed HA coatings within 3 weeks were measured by flame atomic absorption and colorimetrically molybdenum blue complex, respectively. To investigate the effect of dissolution of HA coatings on osteoblast response, additional Ca and Pi were added into the cell culture media to simulate the dissolution concentrations. Human embryonic palatal mesenchyme cells, an osteoblast precursor cell line, were used to evaluate the biological responses to enhanced Ca and Pi media over 2 weeks. Osteoblast differentiation and mineralization were measured by alkaline phosphatase-specific assay and 1,25 (OH)2 vitamin D3 stimulated osteocalcin production. The coatings exhibited an HA-type structure. FTIR indicated the possible presence of carbonates on the coatings. A dissolution study indicated a continual increase in Ca and Pi over time. In the cell culture study, enhanced osteoblast differentiation occurred in the presence of additional Ca concentration in the cell culture media. However, additional Pi concentration in the cell culture media was suggested to slow down osteoblast differentiation and mineralization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.