Abstract

We investigate the superfluid--Mott-insulator transition of a two-dimensional photon gas in a dye-filled optical microcavity and in the presence of a periodic potential. We show that in the random-phase approximation the effects of the dye molecules, which generally lead to dissipation in the photonic system, can be captured by two dimensionless parameters that only depend on dye-specific properties. Within the mean-field approximation, we demonstrate that one of these parameters decreases the size of the Mott lobes in the phase diagram. By considering also Gaussian fluctuations, we show that the coupling with the dye molecules results in a finite lifetime of the quasiparticle and quasihole excitations in the Mott lobes. Moreover, we show that there are number fluctuations in the Mott lobes even at zero temperature and therefore that the true Mott-insulating state never exists if the interactions with the dye are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.