Abstract

In a 2-yr study of causes of mite outbreaks in apple (Malus spp.) orchards in Nova Scotia, we monitored immigration of Tetranychus urticae Koch from orchard ground cover into trees populated by the generalist phytoseiid predator Typhlodromus pyri Scheuten. In both years, T. urticae-days in the tree canopy increased with number of T. urticae caught in sticky bands on tree trunks. In 2000, T. urticae-days were negatively correlated with T. pyri-days. Lack of correlation in 2001 was attributed to higher rates of immigration, which would mask the effects of predation. Weather also affected mite dynamics. Rainfall in July and August was less in 2001 than in 2000. Heat units were sufficient for six generations of T. urticae in 2001 but only for five in 2000. Consequently, T. urticae-days in the tree canopy and immigration rates were significantly greater in 2001 than in 2000, despite three-fold greater use of miticides. We also tested the effects of herbicides on T. urticae immigration. Application of selective herbicides in laneways reduced coverage of reproductive hosts of T. urticae, but these changes did not reduce immigration. In 2001, application of a miticidal herbicide, glufosinate, in tree rows reduced captures of T. urticae on sticky bands in high immigration orchards but not in low immigration orchards. We conclude that generalist predators and modified herbicide use are insufficient remedies and that effective biological control of T. urticae in the ground cover by a specialist phytoseiid such as Amblyseius fallacis Garman is essential to prevent outbreaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call