Abstract

We explore the effects of crystallite size (L(a)) on the linear and non-linear optical properties of chemical vapor deposition grown polycrystalline graphene. The π-plasmon resonance present at ∼4.75 eV (∼260 nm) in the optical absorption spectrum of graphene follows the empirical relationship λ(π) = 250.5 nm + 89.5 nm(2)/L(a), where λ(π) represents the π-plasmon wavelength. Furthermore, our Z-scan studies reveal that the crystallite size significantly changes the saturation intensity in CVD grown graphene. Notably, in comparison to epitaxial graphene layers grown on SiC wafers which exhibit a photogenerated carrier lifetime of few picoseconds, we find that the photogenerated carriers in our CVD grown graphene can exhibit lifetimes as long as nanoseconds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.