Abstract

A vortex gyrating in a magnetic disk has two regimes of motion in the presence of disorder. At large gyration amplitudes, the vortex core moves quasi-freely through the disorder potential. As the amplitude decreases, the core can become pinned at a particular point in the potential and precess with a significantly increased frequency. In the pinned regime, the amplitude of the gyration decreases more rapidly than it does at larger precession amplitudes in the quasi-free regime. In part, this decreased decay time is due to an increase in the effective damping constant and in part due to geometric distortion of the vortex. A simple model with a single pinning potential illustrates these two contributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.