Abstract

Phylogenetic diversity indices such as the Fair Proportion (FP) index are frequently discussed as prioritization criteria in biodiversity conservation. They rank species according to their contribution to overall diversity by taking into account the unique and shared evolutionary history of each species as indicated by its placement in an underlying phylogenetic tree. Traditionally, phylogenetic trees were inferred from single genes and the resulting gene trees were assumed to be a valid estimate for the species tree, i.e., the "true" evolutionary history of the species under consideration. However, nowadays it is common to sequence whole genomes of hundreds or thousands of genes, and it is often the case that conflicting genealogical histories exist in different genes throughout the genome, resulting in discordance between individual gene trees and the species tree. Here, we analyze the effects of gene and species tree discordance on prioritization decisions based on the FP index. In particular, we consider the ranking order of taxa induced by (i) The FP index on a species tree, and (ii) The expected FP index across all gene tree histories associated with the species tree. On the one hand, we show that for particular tree shapes, the two rankings always coincide. On the other hand, we show that for all leaf numbers greater than or equal to five, there exist species trees for which the two rankings differ. Finally, we illustrate the variability in the rankings obtained from the FP index across different gene tree and species tree estimates for an empirical multilocus mammal data set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call