Abstract

We investigated the effects of direct solvent exposure on the properties of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) films and poly(3-hexylthiophene) (P3HT)/PCBM blend films employed as active layers in, respectively, organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). The crystallinity, morphology, and OFET characteristics of the PCBM thin films were significantly influenced by direct exposure to solvent, especially to select alcohols. Control over the nanoscale morphology of the PCBM film, achieved via direct solvent exposure, yielded highly efficient poly(3-hexylthiophene) (P3HT)/PCBM OPVs with a short-circuit current density of 10.2 mA cm−2, an open-circuit voltage of 0.64 V, and a power conversion efficiency of 3.25% under AM 1.5 illumination with a light intensity of 100 mW cm−2. These results indicated that optimal phase separation in the P3HT/PCBM films could be obtained simply by exposing the active layer films for a few seconds to solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.