Abstract

The impact of dimethyl methylphosphonate (DMMP) was studied in a premixed methane/oxygen/N 2-Ar flame in a flat flame burner slightly under atmospheric pressure at two different equivalence ratios: rich and slightly lean. CH 4, CO, CO 2, CH 2O, CH 3OH, C 2H 6, C 2H 4, and C 2H 2 profiles were obtained with a Fourier Transform Infrared (FTIR) spectrometer. Gas samples, analyzed in the FTIR, were extracted from the reaction zone using a quartz microprobe with choked flow at its orifice. Temperature profiles were obtained by measuring the probe flow rate through the choked orifice. Flame calculations were performed with two existing detailed chemical kinetic mechanisms for organophosphorus combustion. DMMP addition caused all profiles except that of CH 3OH to move further away from the burner surface, which can be interpreted as a consequence of a reduction in the adiabatic flame speed. Experimentally, the magnitude of the shift was 50% greater for the near-stoichiometric flame than for the rich flame. Experimental CH 3OH profiles were four to seven times higher in the doped flames than in the undoped ones. The magnitude of this effect is not predicted in the calculations, suggesting a need for further mechanism development. Otherwise, the two mechanisms are reasonably successful in predicting the effects of DMMP on the flame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.