Abstract

AbstractThe influence of configurational disorder on the magnetic properties of diluted Heisenberg spin systems is studied with regard to the ferromagnetic stability of diluted magnetic semiconductors. The equation of motion of the magnon Green's function is decoupled by Tyablikov approximation. With supercell approach, the concentrations of magnetic ions are determined by the size of the supercell in which there is only one magnetic ion per supercell in our method. In order to distinguish the influence of dilution and disorder, there are two kinds of supercells being used: the diluted and ordered case and the diluted and disordered case. The configurational averaging of magnon Green function due to disorder is treated in the augmented space formalism. The random exchange integrals between two supercells are treated as a matrix. The obtained magnon spectral densities are used to calculate the temperature dependence of magnetization and Curie temperature. The results are shown as following: (i) dilution leads to increasing the averaged distance of two magnetic ions, further decreases the effective exchange integrals and is main reason to reduce Curie temperature; (ii) spatial position disorder of magnetic ions results in the dispersions of the exchange integrals between two supercells and slightly changes ferromagnetic transition temperature; (iii) the exponential damping of distance dependence obviously reduces Curie temperature and should be set carefully in any phenomenological model. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call