Abstract

The theory for acoustic radiation force on a viscoelastic sphere of arbitrary size in tissue was extended at the spring 2013 ASA meeting to account for nonaxisymmetric fields incident on the scatterer [Ilinskii et al., POMA 19, 045004 (2013)]. The results were presented in a form that permits inclusion of as many spherical harmonics as needed to describe the field structure. At the fall 2013 ASA meeting, it was shown that for spheres having sizes up to about one wavelength, only four or five spherical harmonics are required for convergence of the solution when plane waves are incident on the scatterer. At the present meeting, the model is applied to diffracting sound beams incident on the scatterer. The analysis is based on angular spectrum decomposition of the incident field, expansion of the resulting plane waves in spherical waves, then a Wigner transformation of the latter back into spherical coordinates with polar axis coinciding with the beam axis, and finally integration over solid angle to obtain the spherical wave amplitudes used in the theory. Results are presented for different radiation patterns illustrating dependence of the radiation force both on beamwidth and on wavelength relative to the size of the scatterer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.