Abstract

Various factors have been invoked to explain the toxicity of silver nanoparticles (AgNP) to microorganisms including particle size and the nature of stabilizing coatings as well as the amount of dissolved silver occurring in AgNP suspensions. In this study we have assessed the effects of nine differently coated AgNP (chitosan, lactate, polyvinylpyrrolidone, polyethelene glycol, gelatin, sodium dodecylbenzenesulfonate, citrate, dexpanthenol, and carbonate) and AgNO3 on the photosynthesis of the freshwater algae Chlamydomonas reinhardtii. We have thus examined how AgNP effects on algae relate to particle size, measured dissolved silver (Agd), and bioavailable silver (Agbioav). Agbioav was indirectly estimated in toxicity experiments by cysteine-silver complexation at the EC50. The EC50 calculated as a function of measured Agd concentrations showed for some coatings values similar to that of dissolved Ag, whereas other coated AgNP displayed lower EC50 values. In all cases, excess cysteine completely prevented effects on photosynthetic yield, confirming the role of Agd as a cause of the observed effect on the photosynthesis. Toxicity was related neither to particle size nor to the coatings. For all differently coated AgNP suspensions, the EC50 values calculated as a function of Agbioav were comparable to the value of AgNO3. Depending on the coatings Agbioav was comparable to or higher than measured Agd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.