Abstract

To elucidate the importance of hybridization in evolution, it is necessary to understand the processes that affect hybridization frequency in nature. Here we focus on postpollination, prefertilization isolating mechanisms using two hybridizing species of Louisiana iris as a study system. We compared the effects of differential pollen-tube growth on the frequency of F1 hybrid formation in experimental crosses between Iris fulva and Iris hexagona. Analyses of seed production in fruits from pure conspecific and heterospecific pollinations revealed that more seeds were produced in the top half than the bottom half of fruits for all four crosses. Heterospecific pollen was applied to flowers of each species at zero to 24 h prior to conspecific pollen, thereby giving a head start to the foreign pollen. Using diagnostic isozyme markers, the frequency of hybrid progeny was examined at the level of the whole fruit and separately for the top and bottom halves of fruits. In both species, the proportion of hybrid seeds per fruit increased significantly with increasing head starts, suggesting that differences in pollen-tube growth rates affect the frequency of hybridization. In I. fulva fruits, the increase in hybrid seeds occurred in both halves of the fruits, but in I. hexagona an increase was only detected in the top half of fruits. These findings are consistent with a model that assumes attrition of pollen tubes due to the greater length of I. hexagona styles. While pollen-tube growth rate appears to be the most important factor affecting hybridization frequency in I. fulva, both pollen-tube growth rate and pollen-tube attrition appear to be important in I. hexagona.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.