Abstract

Nitrogenous disinfection by-products (N-DBPs) raise increasing concerns because of their high genotoxicity, cytotoxicity, and carcinogenicity compared to carbonaceous disinfection by-products (C-DBPs). Nitrogen-containing disinfectants, dissolved organic nitrogen (DON), and inorganic nitrogen may all promote the formation of N-DBPs. Therefore, it is urgent to explore the dominant nitrogen source of N-DBPs under the coexistence of multiple nitrogen sources. In this study, the effects of amino acids, nitrate, ammonia, and chloramine as different types of nitrogen sources on the formation of five N-DBPs were investigated systematically, including chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), bromochloroacetonitrile (BCAN), dibromoacetonitrile (DBAN) and dichloroacetamide (DCAcAm). L-Aspartic acid (L-Asp) as the organic nitrogen source showed a high potential on the formation of N-DBPs by forming acetonitrile intermediates. Ammonia as the inorganic nitrogen source consumed oxidants and changed the existing form of chloramine, thus inhibiting the formation of N-DBPs. Instead of providing nitrogen to N-DBPs, nitrate as a salt promoted the volatilization of N-DBPs, thereby reducing the detected N-DBPs. Furthermore, an isotope labeling method was applied to clearly trace the nitrogen sources of N-DBPs via GC–MS with electron ionization. 15N-chloramine, 15N-amino acid, 15N-nitrate and 15N-ammonia were selected as the corresponding isotopic nitrogen sources. The results indicated that chloramine was the major nitrogen contributor to five N-DBPs during the chloramination of L-Asp under the coexistence of multiple nitrogen sources, ranging from 61 % to 79 %. The influence of environmental factors (reaction time, pH, and bromide) on the formation of N-DBPs during chloramination was also investigated. There was competition between brominated N-DBPs and chlorinated N-DBPs in chloramination. With the increase of reaction time or bromine, the formation potentials of chlorinated N-DBPs gradually decreased, while brominated N-DBPs gradually increased. Moreover, higher pH inhibited the generation of N-DBPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call