Abstract
Silage of native grasses can alleviate seasonal forage supply imbalance in pastures and provide additional sources to meet forage demand. The study aimed to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and Lactobacillus plantarum in combination with Lactobacillus buchneri (PB) on the nutritional quality, fermentation quality, and microbial community of native grass silage at 2, 7, 15, and 60 days after ensiling and at 4 and 8 days after aerobic exposure. The results showed that dry matter content, crude protein content, the number of lactic acid bacteria, and lactic acid and acetic acid content increased and pH and ammonia nitrogen content decreased after lactic acid bacteria (LAB) inoculation compared with the control group (CK). LP had the lowest pH and highest lactic acid content but did not have greater aerobic stability. LB maintained a lower pH level and acetic acid remained at a higher level after aerobic exposure; aerobic bacteria, coliform bacteria, yeast, and molds all decreased in number, which effectively improved aerobic stability. The effect of the compound addition of LAB was in between the two other treatments, having higher crude protein content, lactic acid and acetic acid content, lower pH, and ammonia nitrogen content. At the phylum level, the dominant phylum changed from Proteobacteria to Firmicutes after ensiling, and at the genus level, Lactiplantibacillus and Lentilactobacillus were the dominant genera in both LAB added groups, while Limosilactobacillus was the dominant genus in the CK treatment. In conclusion, the addition of LAB can improve native grass silage quality by changing bacterial community structure. LP is beneficial to improve the fermentation quality in the ensiling stage, LB is beneficial to inhibit silage deterioration in the aerobic exposure stage, and compound LAB addition is more beneficial to be applied in native grass silage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.