Abstract

The tribological performance of internal combustion engines (ICEs) has an important impact on fuel efficiency and power consumption, and the wear of cylinder liner-piston ring (CLPR) system affects the operation reliability. The surface texture of CLPR can significantly improve the tribological performance of ICEs. Aiming at the friction and wear of CLPR, the different textures (dimple, equilateral triangle and square) are generated on the CLPR using laser processing, and the different tests are conducted on the UMT-TriboLab tester. The coefficient of friction, wear topography, surface roughness parameters and profiles are measured. The results show that, compared with the non-textured surface, the dimple texture surface of piston ring or cylinder liner has better tribological performance. If the textures coexist on the cylinder liner and piston ring, the tribological performances are better than single surface texture. Furthermore, the mixed textures can significantly improve the surface lubrication performance and the ability to store abrasive particles, and better surface quality can be obtained at the same operating conditions to enhance the tribological performance. This study can provide guidance for reducing the friction and wear of CLPR system of ICEs, and achieve energy saving and emission reduction of ICEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.