Abstract

ObjectiveThe current laboratory study was to investigate the effect of different sterilization treatments on surface characteristics of zirconia, and biofilm formation on zirconia surface after exposure to these sterilization treatments. MethodsCommercially available zirconia discs (Cerconbase, Degu-Dent, Hanau, Germany) were prepared and polished to the same value of surface roughness. The discs were treated with one of the following sterilization methods steam autoclave sterilization, dry heat sterilization, ultraviolet C (UVC) irradiation, and gamma (γ) ray irradiation. The characteristics of zirconia surfaces were evaluated by scanning electron microscopy (SEM), surface roughness, surface free energy (SFE), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) measurements. Then, Staphylococcus aureus (S.a.) and Porphyromonas gingivalis (P.g.) bacteria were used and cultured on the respective sterilized zirconia surfaces. The amount of biofilm formation on zirconia surface was quantified by colony forming unit (CFU) counts. ResultsSignificant modifications were detected on the colour and SFE of zirconia. The colour of zirconia samples after UVC irradiation became light yellow whilst dark brown colour was observed after gamma ray irradiation. Moreover, UVC and gamma ray irradiation increased the hydrophilicity of zirconia surface. Overall, dry heat sterilized samples showed the significantly lowest amount of bacteria growth on zirconia, while UVC and gamma ray irradiation resulted in the highest. SignificanceIt is evident that various sterilization methods could change the surface which contribute to different biofilm formation and colour on zirconia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.