Abstract
Porous stainless steel (SUS) supports were modified with double intermediate layers, silicalite-1 and γ-alumina, to enhance the hydrogen diffusion of a thin palladium membrane. One of layers, silicalite-1, was prepared using the hydrothermal synthetic method on porous SUS supports. The differences in expansion/contraction behaviors caused by different thermal coefficients of expansion between silicalite-1 and the SUS resulted in a lowering of the durability of the membrane. Intermediates layers of mesoporous MCM-48 powders or commercial spherical non-porous silica particles were then applied to porous SUS supports via aspiration, γ-alumina was introduced by dip-coating, and the Pd membrane was subjected to electro-less plating. H2 permeance of the Pd membrane (membrane thickness: 11 μm) containing spherical silica particles was around 10 × 10−6 mol·m−2·s−1·Pa−1 at 600 °C, which was higher than that of the Pd membrane (membrane thickness: 7 μm) containing MCM-48. The durability of the Pd membrane containing spherical silica particles was higher than that of the version containing MCM-48 powders. These results suggest that commercial spherical non-porous silica particles will uniformly occupy the pores of the SUS tubes and enhance the H2 permeance and durability of the Pd membrane.
Highlights
Introduction of MCM48 powders into porous SUS supports; coating the supports with an γ-alumina layer; and, palladium plating of the porous supports
This study represents an investigation into the preparation of a thin palladium membrane for hydrogen diffusion enhancement using porous stainless steel (SUS) supports modified via the introduction of double intermediate layers
A Pd membrane applied to a silicalite-1 layer that was alkali treated by 0.03 M of a NaOH aqueous solution recorded the highest H2 permeance at approximately 3 × 10−6 mol·m−2·s−1·Pa−1 at 600 °C for all the alkali treated samples, the durability was low
Summary
Introduction of MCM48 powders into porous SUS supports; coating the supports with an γ-alumina layer; and, palladium plating of the porous supports. We measured the levels of H2 permeance and H2/He selectivity obtained by Pd membranes over a porous SUS support with double intermediate layers (silicalite-1 and γ-alumina) and discussed the dependence that alkali conditioning had conferred.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.