Abstract

An innovative approach to escalate the heat generation in peristalsis flow of MHD nanofluids filled in an asymmetric channel is proposed. Three different shapes of nanoparticles, namely (1) spherical, (2) disc and (3) cylindrical are utilized. Results for temperature, velocity and concentrations have been obtained analytically. The physical features for heat generation, concentration, pressure gradient, pressure rise and magnetic parameter have been elaborated graphically, whereas effects of Nusselt number and skin friction have been numerically computed by using the MATLAB software. For bolus features, trapping phenomena are also inspected by dint of stream lines. It is found that cylindrical shapes of nanoparticles have very low thermal conductivity as compared to spherical and disc shapes. Moreover, it is seen that the heat generation parameter always increases the temperature of nanofluid, and consequently, the trapping phenomena produce more boluses for larger values of heat source parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.