Abstract

Background and Objectives: Enhanced osteoblast differentiation may be leveraged to prevent and treat bone-related diseases such as osteoporosis. No-ozone cold plasma (NCP) treatment is a promising and safe strategy to enhance osteoblast differentiation. Therefore, this study aimed to determine the effectiveness of direct and indirect NCP treatment methods on osteoblast differentiation. Mouse osteoblastic cells (MC3T3-E1) were treated with NCP using different methods, i.e., no NCP treatment (NT group; control), direct NCP treatment (DT group), direct NCP treatment followed by media replacement (MC group), and indirect treatment with NCP-treated media only (PAM group). Materials and Methods: The MC3T3-E1 cells were subsequently assessed for cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and ALP and osteocalcin mRNA expression using real-time polymerase chain reaction. Results: Cell proliferation significantly increased in the NCP-treated groups (DT and PAM; MC and PAM) compared to the NT group after 24 h (p < 0.038) and 48 h (p < 0.000). ALP activity was increased in the DT and PAM groups at 1 week (p < 0.115) and in the DT, MC, and PAM groups at 2 weeks (p < 0.000) compared to the NT group. Calcium deposition was higher in the NCP-treated groups than in NT group at 2 and 3 weeks (p < 0.000). ALP mRNA expression peaked in the MC group at 2 weeks compared to the NP group (p < 0.014). Osteocalcin mRNA expression increased in the MC group at 2 weeks (p < 0.000) and was the highest in the PAM group at 3 weeks (p < 0.000). Thus, the effects of direct (DT and MC) and indirect (PAM) treatment varied, with MC direct treatment showing the most significant impact on osteoblast activity. Conclusions: The MC group exhibited enhanced osteoblast differentiation, indicating that direct NCP treatment followed by media replacement is the most effective method for promoting bone formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.