Abstract

Physical exercise represents one of the most effective approaches to anti-aging. The goal of this study was to verify the effects of different modes and intensities of exercise on longevity proteins in the skeletal muscle in midlife. Middle-aged mice were trained in aerobic or resistance exercise for 8 weeks, and the changes in sirtuin 1 (SIRT1), adenosine monophosphate-activated kinase (AMPK), and mammalian target of rapamycin (mTOR) pathways in the skeletal muscle were evaluated by western blotting. Long-term exercise had no effects on skeletal muscle SIRT1 abundance, whereas high-intensity aerobic exercise increased AMPK phosphorylation and peroxisome proliferator-activated receptor-γcoactivator-1α (PGC-1α). Low-intensity resistance exercise facilitated Akt/mTOR/p70 ribosomal protein kinase S6 (p70S6K) signaling but did not induce muscle hypertrophy. Conversely, high-intensity resistance exercise stimulated muscle hypertrophy without phosphorylation of mTOR signaling-related proteins. These results suggest the importance of setting exercise modes and intensities for anti-aging in midlife.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call