Abstract
The effects of 5, 25, and 40 Echinostoma caproni miracidia on the sugar content of young adult and mature adult Biomphalaria glabrata were studied using high performance thin layer chromatography (HPTLC)-densitometry. Analysis was done on the snail’s digestive gland gonad complex (DGG) at two and four weeks postmiracidial exposure. The sugars were extracted from the DGG using 70% ethanol and analyzed on silica gel HPTLC plates with a preadsorbent zone using 1-butanol-glacial acetic acid-diethyl ether-deionized water (27:18:5:3) mobile phase. The separated bands were then detected using alpha-naphthol-sulfuric reagent and quantified by densitometry at 515 nm. Significant differences were found in the maltose content between two and four weeks post exposure for both age groups. Additionally, significantly lower maltose and glucose levels were observed in the high exposure groups of both ages.
Highlights
Previous studies on Biomphalaria glabrata have been concerned with the maltose and glucose composition in the snail; these sugars were confirmed as the primary carbohydrates in this snail using thin layer chromatography (TLC) and high performance TLC (HPTLC) [1]
In a study by HPTLC on the effects of temperature on carbohydrate composition, snails maintained at higher temperatures were found to have a lower maltose concentration and higher glucose concentration than those kept at lower temperatures [3]
We observed a significant increase in the maltose content of the snails between the two-week necropsy and the four-week necropsy for both age groups, and an increase in the glucose content between the necropsies
Summary
Previous studies on Biomphalaria glabrata have been concerned with the maltose and glucose composition in the snail; these sugars were confirmed as the primary carbohydrates in this snail using thin layer chromatography (TLC) and high performance TLC (HPTLC) [1]. In a study by HPTLC on the effects of temperature on carbohydrate composition, snails maintained at higher temperatures were found to have a lower maltose concentration and higher glucose concentration than those kept at lower temperatures [3]. It has been found using HPTLC that carbohydrate composition in both the snail body and hemolymph is affected by E. caproni miracidial infection, with infected snails having a lower mass percentage of carbohydrate [1,4]. In an HPTLC study by Hunsberger et al [5], the lipid content of the snails was studied as affected by the level of miracidial infection, with five miracidia per snail being the low dose and 25 miracidia per snail being the high dose
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.