Abstract

Photosynthesis and cell composition of Porphyraleucosticta discs grown at low (< 0.0001% in air), current (control) and high (1% CO2 in air)inorganic carbon (Ci) concentrations were analyzed. Carbohydrate content in discs grown at high Ci increased (15.1 mg g-1 FW) with respect to the control (6.4 mg g FW-1), whereas soluble protein content decreased to one-third (5.6 to2.1 mg g-1 FW). Carbohydrate content was unaffected and soluble protein slightly increased in discs grown at low Ci. As a consequence of these changes, a lower C/N molar ratio (8.6) was found in the discs grown at low compared to high Ci(12.4). Nitrate reductase activity increased at high Ci from 0.3 ± 0.2 to 1.7 ± 0.4 μmolNO2 - g-1 FW h-1indicating that reduction and assimilation of nitrate were uncoupled. The response of photosynthesis to increasing irradiance, estimated from O2evolution vs. irradiance curves, was affected by the treatments. Maximum quantum yield (Φ O2°) and effective quantum yield (Φ O2) at 150 μmol photon m-2s-1 decreased by 20% and 50%, respectively, at low Ci. These differences could be due to changes in photosynthetic electron flow between PSII and PSI. Treatments also produced changes in maximal (Fv/Fm) and effective (ΔF/Fm′)quantum yield for photosystem II charge separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call