Abstract

AbstractBiochar application, as a kind of soil amendment, significantly influences soil physical and mechanical properties. This study revealed the effects of biochar application on the physical and mechanical properties of a clay‐type soil at different irrigation levels. Soil was treated with three levels of biochar application: B0 (0 t ha⁻¹), B1 (25 t ha⁻¹) and B2 (50 t ha⁻¹), and three levels of irrigation: T0 (1.2 pan evaporation Ep), T1 (1.0 Ep) and T2 (0.8 Ep). The results indicated that other treatments reduced the soil bulk density compared with the control treatment (CK) (B0T1). Compared to CK, the highest reduction in soil bulk density was 18%. Irrigation did not improve the soil bulk density and porosity at the same biochar application in the short term. Biochar enhanced the stability of the soil aggregates. Compared to CK, the largest MWD (mean weight diameter) was enhanced by 9%. The addition of biochar and decreasing irrigation could decrease soil cohesion. The addition of biochar and increasing irrigation could increase the soil internal friction angle. The soil cohesion first increased and then decreased as the soil water content increased. According to the fitting formula, the soil cohesion was found to be minimum at B2T2, which was a decrease of 39% compared to B0T1. At the same irrigation level, the soil internal friction angle decreased with increasing soil water content. Soil penetration resistance showed a decreasing trend with the application of biochar. The more irrigation there is, the larger the soil penetration resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call