Abstract
Overtreatment design of clear aligner treatment (CAT) in extraction cases is currently primarily based on the clinical experience of orthodontists and is not supported by robust evidence on the underlying biomechanics. This study aimed to investigate the biomechanical effects of overtreatment strategies involving different maxillary anterior teeth intrusion patterns during anterior teeth retraction by CAT in extraction cases. A finite element model of the maxillary dentition with the first premolar extracted was constructed. A loading method of clear aligners (CAs) based on the initial state field was proposed. The iterative method was used to simulate the long-term orthodontic tooth movement under the mechanical load exerted by the CAs. Three groups of CAs were utilized for anterior teeth retraction (G0: control group; G1: incisors intrusion group; G2: anterior teeth intrusion group). Tooth displacement and occlusal plane rotation tendency were analyzed. In G0, CAT caused lingual tipping and extrusion of the incisors, distal tipping and extrusion of the canines, mesial tipping, and intrusion of the posterior teeth. In G1, the incisors showed minimal extrusion, whereas the canines showed increased extrusion and distal tipping tendency. G2 showed the smallest degree of posterior occlusal plane angle rotation, while the inclination tendency of the canines and second premolars decreased. 1. In CAT, tooth displacement tendency may change with increased wear time. 2. During anterior teeth retraction, the incisor intrusion pattern can provide effective vertical control for the lateral incisors but has little effect on the central incisors. Anterior teeth intrusion patterns can alleviate the inclination of canines and second premolars, resulting in partial relief of the roller-coaster effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.