Abstract
The helmet plays an important role in protection of pilot’s head and enhances the pilot’s capabilities and performance significantly with the use of mounted devices such as the Night Vision Goggle (NVG). However, the use of helmet-mounted devices might increase the risk of injury due to the increased helmet weight and change in the centre of gravity of head. In this study, four helmets with different combinations of mounted devices were modelled in a validated human head–neck multi-body model to analyse their effects on the pilot’s neck injury during simulated ejection. The probability of neck injury was evaluated and predicted using the neck injury criteria and human injury risk curves, considering the tolerance of injury for upper and lower cervical segment. It was demonstrated that the helmet-mounted devices would increase the compression force and bending moment on cervical spine, especially for the lower cervical segments with higher . In the cases with Night Vision Goggle, of the lower cervical segment reached 0.54, which exceeded the requirement in aviation filed. For the cases with Visor, excessive extension occurred, resulting in a high . The simulation results of this study could provide a reference for helmet and mounted devices design and offer a proposal for the protection of pilots during ejection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.