Abstract

Poly-p-phenylene-benzimidazole-terephthalamide (PBIA) fiber was surface modified by direct fluorination under three different routes. The fiber was dried under vacuum to remove physisorbed water trapped on it and then fluorinated by the fluorine and oxygen gases or by the fluorine gas only. Results show that the interlaminar shear strength (ILSS) value of these two kinds of fluorinated fiber reinforced epoxy resin was 43.9MPa and 51.0MPa, which was improved about 14.0% and 32.5% compared with that of the virgin fiber (38.5MPa), respectively. In the third route, the fiber was fluorinated by the fluorine and oxygen gases without removing physisorbed water, and the ILSS value decreased for nearly 31.2%, i.e. from 38.5MPa to 26.5MPa. X-ray photoelectron spectroscopy (XPS) showed that oxygen-containing and fluorine-containing chemical groups were introduced onto the fiber surface after fluorination, providing a stronger chemical bonding to polymeric matrices. Scanning electronic microscopy (SEM) indicated that the surface morphology of the fluorinated PBIA fiber varied with the different fluorination routes. A mass of compact micro groove structures was formed by the route that the fiber was dried to remove physisorbed water and then fluorinated with fluorine gas only. And these structures would markedly improve the ILSS of the composites. But, a mass of unstable flake surface structures was formed by the route that the fiber was fluorinated with the fluorine and oxygen gases without removing physisorbed water. And these structures would be the weak interface between the fiber and matrix and decrease the ILSS, even a lot of polar chemical groups were bonded onto the fiber surface as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call