Abstract

Exercise increases oxidative stress, leading the body to strengthen its antioxidant defenses, thus reducing the incidence of major diseases. As these associations are relatively unclear for ordinary levels of exercise for reduced stress, this study evaluated the effects of different exercise conditions on diacron-reactive oxygen metabolites (d-ROMs), biological antioxidant potential (BAP), and subjective mood. Forty-nine students (22.4 ± 2.6 years) were assessed using the Profile of Mood States (POMS) before and after exercising for 60 min. Participants were divided into two groups: Group A engaged in compulsory sports and Group B in freely chosen sports. d-ROMs and BAP were measured, and their modified ratio was calculated as an index of antioxidant potential. Physiological evaluation showed significant improvements in BAP and the BAP/d-ROMs ratio, irrespective of exercise condition (p < 0.001, p < 0.01). Comparison between the exercise conditions revealed a significant difference in the modified ratio (p < 0.02). In mood assessment, scores on emotion-related scales without vigor improved significantly under both exercise conditions (p < 0.001). Mental changes were evident after exercise, and potential antioxidant capacity was higher in freely chosen sports (p < 0.03). Assessment of antioxidant status before and after exercise may provide an objective index of mental and physical conditioning.

Highlights

  • Oxidative stress assessments are most often carried out in the event of illness

  • Group A engaging in compulsory sports and Group B engaging in freely chosen sports for 60 min

  • This study demonstrated the effect of exercise conditions on the antioxidant potential and mood states of healthy adults before and after engaging in compulsory sports (Group A) or freely chosen sports (Group B)

Read more

Summary

Introduction

Oxidative stress assessments are most often carried out in the event of illness. recent studies on the measurements of oxidative stress and biological antioxidant potential (BAP) in evaluating the condition of athletes have started to emerge in the fields of sports and health sciences, in Japan and elsewhere [1,2,3,4,5,6]. Oxidative stress due to highly reactive oxygen species, such as hydrogen peroxide, damages deoxyribonucleic acid (DNA) and proteins, leading to deleterious effects in the body. Oxidative stress is induced in cells by means of a range of factors, such as external stress and oxidative phosphorylation in the mitochondria [7]. This may result in aging, the development of cancer, and a range of other diseases. The ∆BAP/d-ROMs ratio, obtained by dividing the diacron-reactive oxygen metabolites (d-ROMs) by BAP, is known as the antioxidant potential balance marker. There is a discussion on this process being adopted as a general index of oxidative stress in research and clinical practice in approximately 40 countries worldwide [9,10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call