Abstract
The aim of this in vitro study is to evaluate the effect of Er,Cr:YSGG laser parameters, specifically power (Watt) and frequency (Hertz), throughout both, shear bond strength (SBS) and dentin-composite interface morphology, when using laser etch as an alternative to acid etching with a “two-step” total etch adhesive. Thirty-six human sound molars were mounted on acrylic blocks, randomly divided into six groups, six teeth into each group, where five teeth were selected for the SBS test, and one sectioned for the scanning electron microscope (SEM) analysis. Teeth were sliced occlusally to expose a flattened dentin surface, then grouped according to various treatments: control group, only treated with phosphoric acid etchant; and groups 1–5, only treated with Er,Cr,:YSGG laser irradiating at 3 W/25 Hz, 3 W/50 Hz, 4 W/25 Hz, 4 W/50 Hz, and 5 W/75 Hz respectively. The adhesive was applied followed by composite build up. SBS test was carried out using a universal testing machine. The resin-dentin interface was analyzed utilizing a SEM. The control group showed the highest SBS values (11.38 ± 2.03 Mpa). Group 5 (5 W/75 Hz) was the second highest (8.46 ± 1.82 Mpa), yet the highest among the entire laser-irradiated groups, showing a marginal/borderline significance with the control group (P = 0.044). Group 3 (4 W/25 Hz) came second through the laser samples (7.41 ± 0.97 Mpa). SEM analysis manifested premier retentive composite dentin interface among the control group and groups 5 and 3. When applying Er,Cr,:YSGG laser solely for dentin etching, adjusting the settings to a power of 5 W and frequency at 75 Hz will lead to optimum results regarding both SBS and interface morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.