Abstract

This study investigated the effects of dietary energy levels on growth, blood metabolites, and stress biomarkers in Korean native calves subjected to heat stress (HS). Twenty-four calves (BW: 221.5 ± 24.9 kg; age: 162 ± 4.8 d) were randomly housed in climate-controlled chambers using 3 × 2 factorial design. There were three treatment groups including low energy (LE = 2.53), medium energy (ME = 2.63), and high energy levels (HE = 2.72 Mcal/kg of DM) and two stress levels (threshold: THI = 70–73; severe: THI = 89–91). The calves were adapted to 22 °C for 7 days, then to the target THI level for 14 days. Energy intake, average daily gain, and gain to feed ratio were determined to decline (p < 0.05) under severe HS compared with threshold. Under severe HS, rectal temperature was increased 0.67 °C compared with threshold. Severe HS increased glycine, ammonia, and 3-methylhistidine concentrations compared with threshold (p < 0.05). Gluconeogenic AAs in the blood were increased among the various energy levels regardless of HS. In PBMCs the expression of HSP70 gene was increased in the LE group (p < 0.05), and the HSP90 gene expression was increased in LE and ME groups (p < 0.05) under severe HS. However, the expression of genes HSP70 and HSP90 in HE group did not differ under severe HS (p > 0.05). It has been suggested that HE intake may have a beneficial effect on PBMCs by mitigating ATP depletion. No differences in growth performance were found when increasing energy intake with high protein (CP 17.5%) under HS. However, the increase in energy levels resulted in increased gluconeogenic AAs but decreased urea and 3-methylhistidine in blood. In conclusion, increased energy levels are thought to improve HS adaptability by inhibiting muscle degradation and glucose production using gluconeogenic AAs in Korea native calves under HS condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call