Abstract

Abstract. We present a comparison between three absorption photometers that measured the absorption coefficient (σabs) of ambient aerosol particles in 2012–2017 at SMEAR II (Station for Measuring Ecosystem–Atmosphere Relations II), a measurement station located in a boreal forest in southern Finland. The comparison included an Aethalometer (AE31), a multi-angle absorption photometer (MAAP), and a particle soot absorption photometer (PSAP). These optical instruments measured particles collected on a filter, which is a source of systematic errors, since in addition to the particles, the filter fibers also interact with light. To overcome this problem, several algorithms have been suggested to correct the AE31 and PSAP measurements. The aim of this study was to research how the different correction algorithms affected the derived optical properties. We applied the different correction algorithms to the AE31 and PSAP data and compared the results against the reference measurements conducted by the MAAP. The comparison between the MAAP and AE31 resulted in a multiple-scattering correction factor (Cref) that is used in AE31 correction algorithms to compensate for the light scattering by filter fibers. Cref varies between different environments, and our results are applicable to a boreal environment. We observed a clear seasonal cycle in Cref, which was probably due to variations in aerosol optical properties, such as the backscatter fraction and single-scattering albedo, and also due to variations in the relative humidity (RH). The results showed that the filter-based absorption photometers seemed to be rather sensitive to the RH even if the RH was kept below the recommended value of 40 %. The instruments correlated well (R≈0.98), but the slopes of the regression lines varied between the instruments and correction algorithms: compared to the MAAP, the AE31 underestimated σabs only slightly (the slopes varied between 0.96–1.00) and the PSAP overestimated σabs only a little (the slopes varied between 1.01–1.04 for a recommended filter transmittance >0.7). The instruments and correction algorithms had a notable influence on the absorption Ångström exponent: the median absorption Ångström exponent varied between 0.93–1.54 for the different algorithms and instruments.

Highlights

  • Atmospheric aerosol particles have a notable effect on the Earth’s radiative balance

  • We presented a comparison of three different absorption photometers (AE31, particle soot absorption photometer (PSAP), and multi-angle absorption photometer (MAAP)), which measured ambient air at SMEAR II, a rural station located in the middle of a boreal forest in southern Finland

  • We compared different correction algorithms that are used in determining the absorption coefficient from the raw absorption photometer data

Read more

Summary

Introduction

Atmospheric aerosol particles have a notable effect on the Earth’s radiative balance. The particles affect the Earth’s climate directly by scattering and absorbing radiation from the Sun and indirectly through aerosol–cloud interactions (IPPC, 2013). According to an IPCC report (IPPC, 2013), one of the greatest uncertainties in determining the global radiative forcing is related to atmospheric aerosol particles. Reasons for the large uncertainty are the complex nature of aerosol– cloud interactions and the great spatiotemporal variation of the particles (Lohmann and Feichter, 2005). Size distribution, chemical composition, and shape of the particles vary in both space and time, it is challenging to model and estimate the effect that the aerosol particles have on climate on a global scale (IPPC, 2013)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call