Abstract

Drug delivery systems require that carrier materials have good biocompatibility, degradability, and constructability. Poly(amino acids), a substance with a distinctive secondary structure, not only have the basic features of the carrier materials but also have several reactive functional groups in the side chain, which can be employed as drug carriers to deliver anticancer drugs. The conformation of isomers of drug carriers has some influence on the preparation, morphology, and efficacy of nanoparticles. In this study, two isomers of polylysine, including ε-polylysine (ε-PL) and α-polylysine (α-PL), were used as drug carriers to entrap methotrexate (MTX) and construct nano-drug delivery systems. ε-PL/MTX nanoparticles with the morphology of helical nanorods presented a small particle size (115.0 nm), and relative high drug loading content (57.8 %). The anticancer effect of ε-PL/MTX nanoparticles was 1.3-fold and 2.6-fold stronger than that of α-PL/MTX nanoparticles in vivo and in vitro, respectively. ε-PL is an ideal drug carrier with potential clinical application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.