Abstract
In the current study, 20 nm zinc oxide (ZnO) nanoparticles were used to manufacture high-density ZnO discs doped with Mn and Sn via the conventional ceramic processing method, and their properties were characterized. Results show that the dopants were found to have significant effects on the ZnO varistors, especially on the shape and size of grains, which are significantly different for both dopants. The strong solid-state reaction in the varistor from the 20 nm ZnO powder during the sintering process may be attributed to the high surface area of the 20 nm ZnO nanoparticles. Although Mn and Sn do not affect the well-known peaks related to the wurtzite structure of ZnO ceramics, a few of the additional peaks could be formed at high doping content (≥2.0) due to the formation of other unknown phases during the sintering process. Both additives also significantly affect the electrical properties of the varistor, with a marked changed in the breakdown voltage from 415 V to 460 V for Sn and from 400 V to 950 V for Mn. Interestingly, the electrical behaviors of the varistors, such as breakdown voltage, nonlinear coefficient, and barrier height, are higher for Mn- than Sn-doping samples, and the opposite behaviors hold for hardness, leakage currents, and electrical conductivities. Results show that the magnetic moment and valence state of the two additive dopants are responsible for all demonstrated differences in the electrical characteristics between the two dopants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.