Abstract

Zn alloys have lately captivated the attention of the scientific community as possible materials for cardiovascular applications, showing a corrosion behavior and mechanical properties in between of those of Mg and Fe alloys. To better understand the different aspects of the interaction of Zn with body fluids, the basic corrosion pattern and the degradation products’ formation were investigated considering the effect of CO2 amount in the atmosphere and different pseudo-physiological media; that is Hanks’ balanced salt (HSS), Dulbecco’s phosphate-buffered saline (PSS) and physiological saline solution (NSS), through a 14-day static immersion study. A mixed degradation layer mainly composed of ZnO with Zn3(PO4)2·4H2O and Zn(CO3)2 precipitates was found on surfaces immersed in both HSS and PSS, independently of the atmosphere, while a ZnO/ZnCl2 layer was found on the surface immersed in NSS, which also revealed the higher corrosion rate due to the effect of Cl− ions. Samples tested under a CO2-rich atmosphere showed a more compact passivating layer, higher dimensions crystals and less cavities when tested in HSS, PSS and NSS, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.