Abstract

This study aims to compare the effects of different carbon sources on sulfur-oxidizing denitrifying microorganisms by using glucose, ethanol, and acetate as carbon sources. Under the same chemical oxygen demand Cr (CODCr), nitrate, and sulfide concentrations, the removal rate of nitrate and total organic carbon, and the yield of elemental sulfur in a static experiment and a continuous flow reactor with glucose as the carbon source were lower than those with ethanol and acetic acid as the carbon source. The core sulfur-oxidizing denitrifying bacteria that use glucose as the carbon source were Azoarcus, Geoalkalibacter, and Mangroviflexus; those that use ethanol as the carbon source were Arcobacter, Pseudomonas, and Thauera; those that use acetate as the carbon source were Pseudomonas and Azoarcus. The metabolic activity of microorganisms that use different carbon sources was explained by functional gene detection. The fluctuation of gltA, a functional gene indicating heterotrophic metabolism of microorganisms, was small in three reactors, but that of the sulfur oxidation gene, Sqr, in the reactor with acetic acid as the carbon source was larger. Our results suggest that acetate is a more suitable carbon source for denitrification-desulfurization systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call