Abstract

BackgroundTo compare different anti-caries agents on microhardness and micromorphology of irradiated permanent dentin in vitro, and try to find the most effective agent to prevent radiation-dentin-destruction.MethodsA total of 120 dentin samples were prepared from 60 human teeth and randomly divided into 8 groups (n = 15), [ (1)] blank control [2]; irradiation control [3]; irradiation+ fluoride [4]; irradiation+ casein phosphate polypeptide-amorphous calcium phosphate (CPP-ACP) [5]; irradiation+ CPP-ACP+ fluoride [6]; irradiation+ infiltration resin [7]; irradiation+ infiltration resin+ fluoride [8]; irradiation+ infiltration resin+ CPP-ACP. Seven samples of each groups were chosen randomly for microhardness test and eight for scanning electron microscope observation. Results: A decrease of microhardness (P < 0.05) and an obvious morphological change were presented on dentin surface after radiotherapy. After applications of anti-caries agents, the morphological destructions were effectively restored. The infiltration resin plus fluoride group (56.00 ± 4.02 Kg/mm2), infiltration resin plus CPP-ACP group (56.05 ± 3.69 Kg/mm2), infiltration resin group (54.70 ± 4.42Kg/mm2) and CPP-ACP plus fluoride group (53.84 ± 6.23Kg/mm2) had the highest dentin microhardness value after radiotherapy, and no statistically significant difference were found between them.ConclusionsInfiltration resin, CPP-ACP, fluoride and their pairwise combination can effectively prevent radiation-dentin-destruction. Among them, infiltration resin with CPP-ACP, infiltration resin with fluoride, CPP-ACP with fluoride, and infiltration resin have the most protective effects on irradiation-dentin-destructions.

Highlights

  • To compare different anti-caries agents on microhardness and micromorphology of irradiated permanent dentin in vitro, and try to find the most effective agent to prevent radiation-dentin-destruction

  • A novel product casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), which is a nanocomplex derived from milk protein and usually used for the management of incipient

  • Somasundaram [11] et al evaluated the protective effects of Casein phosphopeptide (CPP)-ACP paste and fluoride toothpaste on demineralized caries lesions and the results showed that CPP-ACP significantly reduced the depth of lesions with 20.22% more than that of fluoride toothpaste

Read more

Summary

Introduction

To compare different anti-caries agents on microhardness and micromorphology of irradiated permanent dentin in vitro, and try to find the most effective agent to prevent radiation-dentin-destruction. Radiation related-caries (RRC) is one of the most common oral complications with the incidence of 90% in head and neck cancer (HNC) patients after radiotherapy [1]. There is evidence that the co-morbidity of radiotherapy on teeth is one of the important pathogenic factors for RRC, including changes in microstructure and mechanical properties of dental hard tissues [2]. Fluorides, which are currently thought to be an effective anti-caries agent used by form of mouthwashes, dentifrices, gels, varnishes, prevent caries by inhibiting demineralization and promoting remineralization [4]. Fluorides are always used as positive control materials whenever new remineralization agents need to be tested [4]. A novel product casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), which is a nanocomplex derived from milk protein and usually used for the management of incipient

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.