Abstract

The binding of diethylstilbestrol (DES) to aldehyde dehydrogenase (ALDH) has a very similar effect on the dehydrogenase activity of the enzyme as has modification of the enzyme by 2,2'-dithiodipyridine [Kitson, T.M. (1982) Biochem. J. 207, 81-89]. The latter modification may occur at the site of the esterase activity of the enzyme [Kitson, T.M. (1985) Biochem. J. 228, 765-767]. This suggests that DES might be a competitive inhibitor of the esterase reaction. However, in the absence of oxidized nicotinamide adenine dinucleotide (NAD+) or reduced nicotinamide adenine dinucleotide (NADH), and at low concentrations of substrate (4-nitrophenyl acetate, PNPA), DES is a potent partial noncompetitive inhibitor. It is concluded therefore that DES binds at a site different from the esterase active site and that the enzyme-DES complex retains some ability to act as an esterase. High concentrations of PNPA appear to displace DES from its binding site. In the presence of NAD+, DES is a weaker inhibitor, and in the presence of NADH, DES has very little effect. Esterase activity is enhanced by NADH when PNPA concentrations are high but is inhibited when they are low. The rate of reaction of ALDH with 2,2'-dithiodipyridine is only slightly reduced by DES, suggesting that the site at which thiol modifiers react and the DES binding site are different. When ALDH is modified by 2,2'-dithiodipyridine, it has reduced esterase activity, which declines further as the modified enzyme loses its 2-thiopyridyl label. In the presence of NAD+, chloral hydrate is a simple competitive inhibitor of the esterase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call