Abstract

This study evaluated the influence of diets containing mealworm (Tenebrio molitor) meal in partial substitution of fishmeal on growth performance and immune responses of juvenile yellow catfish (Pelteobagrus fulvidraco). Four diets were formulated to contain 0 (the control diet), 9, 18 and 27 g mealworm meal per 100 g diet with 0%, 25%, 50% and 75% of fishmeal replacement, respectively. Yellow catfish were randomly divided into 4 groups with 3 replicates in each group. The fish in each group were fed with one of the four experimental diets for 5 weeks. Growth performance, plasma parameters (SOD, MDA, IgM, C3, lysozyme) and immune related genes (MHC II, IL-1, CypA, IgM, HE) of yellow catfish were determined at the end of the feeding trial, as well as 24 h post bacterial (Edwardsiella ictaluri) challenge. The present results showed that dietary inclusion of mealworm meal (MW) had no negative effects on the growth performance of the juvenile yellow catfish, compared to the control group. At the end of the feeding trial, plasma MDA contents of MW supplemented groups were significant lower than the control group. Plasma SOD activities increased significantly with the increasing dietary MW contents at the end of feeding trial (pre-challenge) and 24 h post challenge with E. ictaluri. Significant increase of plasma lysozyme activity was found in MW supplemented groups compared to the control group 24 h post bacterial challenge. Plasma IgM levels increased significantly with the increasing dietary MW contents at the end of feeding trial. Compared with the control group, the immune related genes of MHC II, IL-1, IgM and HE of the fish in the MW supplemented groups significantly upregulated pre-challenge or 24 h post bacterial challenge. Finally, it was observed that the survival rate of the 27% MW group was significant higher (P < 0.05) than the control group but was not significantly differed from the 18% MW group. The present results indicated that dietary inclusion level of at least 18% MW could improve the immune response and the bacterial resistance of yellow catfish without any negative growth effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call