Abstract

The objective of this experiment was to investigate the effects of dietary crude protein (CP) content and crystalline amino acids (CAA) supplementation patterns in low CP (LCP) diets on intestinal bacteria and their metabolites in weaned pigs raised under clean (CSC) or unclean sanitary conditions (USC). One hundred forty-four piglets (6.35 ± 0.63 kg) were assigned to one of six treatments in a 3 × 2 factorial arrangement based on CP content and sanitary conditions in a randomized complete block design to give eight replicates with three pigs per pen over a 21-d period. Diets consisted of a high CP (HCP; 21%) and two LCP (18%) diets supplemented with 9 CAA (Lys, Met, Thr, Trp, Val, Ile, Leu, His, and Phe) or only six CAA (Lys, Met, Thr, Trp, Val, and Ile) to meet the requirements. The CSC room was washed weekly, whereas the USC room had sow manure spread in the pens from the beginning of the study and was not washed throughout the experiment. Jejunum and colon digesta were sampled on day 21. Both jejunum and colon digesta were analyzed for ammonia nitrogen, short-chain fatty acids, and biogenic amines but only colon digesta was analyzed for microbiome composition (16s rRNA sequencing on MiSeq). Data were analyzed using R software for 16S rRNA and the MIXED procedure of SAS for microbial metabolites. Sanitation, CP content, and CAA supplementation patterns did not affect the diversity of colonic bacterial composition in weaned pigs. Pigs raised under USC had greater (P < 0.05) jejunal ammonia nitrogen concentration than those raised under CSC. Pigs fed LCP diets had reduced (P < 0.05) jejunal ammonia nitrogen concentration compared to those fed the HCP diet. Interactions between sanitation and dietary CP content were observed (P < 0.05) for: (1) jejunal acetate and (2) colonic spermidine and spermine, whereby (1) acetate concentrations decreased from NCP to LCP in pigs raised under the CSC but those concentrations increased under the USC, and (2) spermidine and spermine concentrations increased in LCP diets compared to HCP diet under USC, unlike CSC which did not show any difference between HCP and LCP. In conclusion, reducing dietary CP lowered ammonia nitrogen content regardless of sanitation and increased microbial metabolites in weaned pigs raised under USC. However, LCP diets with different CAA supplementation patterns did not affect bacterial diversity in weaned pigs, regardless of the hygienic conditions where the animals were housed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call