Abstract

This study of larval Drosophila melanogaster examined the effects of injecting the prototypical organic cation tetraethylammonium (TEA) into the hemocoel or adding TEA and/or other organic cations to the diet. Mortality, hemolymph TEA levels, and Malpighian tubule TEA secretion rates were measured. The LD50 for dietary TEA was 158.4 mM and mortality increased if competitive inhibitors of organic cation transporters were also included in the diet. Mortality increased from 24% on TEA (100 mM) alone to 83 and 67% when the diet contained both TEA and quinidine (10 mM) or cimetidine (100 mM), respectively. TEA-selective microelectrode measurements indicated that hemolymph TEA concentration was approximately 3% of that in the diet for larvae maintained on TEA-enriched diet for 24 h. Malpighian tubules isolated from larvae exposed to dietary TEA excreted more TEA than did tubules from controls fed a TEA-free diet. However, the rate of decline of hemolymph TEA concentration following ingestion or injection of TEA into the hemocoel was greater than that explicable by rates of active transport by the gut and Malpighian tubules (MTs). We propose that TEA concentrations in the hemolymph are reduced not only by active transport across the MTs and gut, but also by diffusion into the gut. The latter pathway is particularly important when larvae previously maintained upon TEA-enriched diet are transferred to a TEA-free diet. The ingestion of TEA-free food not only clears the gut lumen, but also creates a TEA-free compartment into which TEA may passively diffuse from the hemolymph.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call