Abstract

Background: Crohn’s disease (CD) is characterized by chronic inflammation of the gastrointestinal tract with alternating periods of exacerbation and remission. The aim of this study was to determine the time-dependent effects of dietary oat beta-glucans on colon apoptosis and autophagy in the CD rat model. Methods: A total of 150 Sprague–Dawley rats were divided into two main groups: healthy control (H) and a TNBS (2,4,6-trinitrobenzosulfonic acid)-induced colitis (C) group, both including subgroups fed with feed without beta-glucans (βG−) or feed supplemented with low- (βGl) or high-molar-mass oat beta-glucans (βGh) for 3, 7, or 21 days. The expression of autophagy (LC3B) and apoptosis (Caspase-3) markers, as well as Toll-like (TLRs) and Dectin-1 receptors, in the colon epithelial cells, was determined using immunohistochemistry and Western blot. Results: The results showed that in rats with colitis, after 3 days of induction of inflammation, the expression of Caspase-3 and LC3B in intestinal epithelial cells did not change, while that of TLR 4 and Dectin-1 decreased. Beta-glucan supplementation caused an increase in the expression of TLR 5 and Dectin-1 with no changes in the expression of Caspase-3 and LC3B. After 7 days, a high expression of Caspase-3 was observed in the colitis-induced animals without any changes in the expression of LC3B and TLRs, and simultaneously, a decrease in Dectin-1 expression was observed. The consumption of feed with βGl or βGh resulted in a decrease in Caspase-3 expression and an increase in TLR 5 expression in the CβGl group, with no change in the expression of LC3B and TLR 4. After 21 days, the expression of Caspase-3 and TLRs was not changed by colitis, while that of LC3B and Dectin-1 was decreased. Feed supplementation with βGh resulted in an increase in the expression of both Caspase-3 and LC3B, while the consumption of feed with βGh and βGl increased Dectin-1 expression. However, regardless of the type of nutritional intervention, the expression of TLRs did not change after 21 days. Conclusions: Dietary intake of βGl and βGh significantly reduced colitis by time-dependent modification of autophagy and apoptosis, with βGI exhibiting a stronger effect on apoptosis and βGh on autophagy. The mechanism of this action may be based on the activation of TLRs and Dectin-1 receptor and depends on the period of exacerbation or remission of CD.

Highlights

  • Inflammatory bowel disease (IBD) is becoming an increasingly common disease in the population of developed countries

  • The lesions were of transwall nature, covering mucosa and the deeper layers of the intestinal wall, which is a characteristic of Crohn’s disease (CD)

  • The results of this study showed that, after 3 days of TNBS administration, the expression of Toll-like receptors (TLRs) 4 and TLR 6 receptors in colonocytes was significantly lower in the colitis group receiving feed without beta-glucans as compared to the control group fed with the same feed

Read more

Summary

Introduction

Inflammatory bowel disease (IBD) is becoming an increasingly common disease in the population of developed countries. IBD is a disease characterized by chronic inflammation of the gastrointestinal tract, and includes ulcerative colitis (UC) and Crohn’s disease (CD) [2]. Results: The results showed that in rats with colitis, after 3 days of induction of inflammation, the expression of Caspase-3 and LC3B in intestinal epithelial cells did not change, while that of TLR 4 and Dectin-1 decreased. Conclusions: Dietary intake of βGl and βGh significantly reduced colitis by time-dependent modification of autophagy and apoptosis, with βGI exhibiting a stronger effect on apoptosis and βGh on autophagy The mechanism of this action may be based on the activation of TLRs and Dectin-1 receptor and depends on the period of exacerbation or remission of CD

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call