Abstract

Expansion of the biodiesel industry has increased the glycerin (GLY) supply. Glycerin is an energy-dense feed that can be used in ruminant species; however, the energy value of GLY is not known. Therefore, the effects of GLY inclusion at 0, 5, 10, and 15% on energy balance in finishing cattle diets were evaluated in 8 steers (BW = 503 kg) using a replicated Latin square design. Data were analyzed with the fixed effects of dietary treatment and period, and the random effects of square and steer within square were included in the model. Contrast statements were used to separate linear and quadratic effects of GLY inclusion. Glycerin replaced dry-rolled corn (DRC) at 0, 5, 10, and 15% of dietary DM. Dry matter intake decreased linearly (P = 0.02) as GLY increased in the diet. As a proportion of GE intake, fecal energy loss tended to decrease linearly (P < 0.07), and DE also tended to increase linearly (P = 0.07) as dietary level of GLY increased. Urinary energy loss was not different (P > 0.31) as a proportion of GE as GLY increased in the diet. Methane energy loss as a proportion of GE intake tended to respond quadratically (P = 0.10), decreasing from 0 to 10% GLY inclusion and increasing thereafter. As a proportion of GE intake, ME tended to respond quadratically (P = 0.10), increasing from 0 to 10% GLY and then decreasing. As a proportion of GE intake, heat production increased linearly (P = 0.02) as GLY increased in the diet. Additionally, as a proportion of GE intake, retained energy (RE) tended to respond quadratically (P = 0.07), increasing from 0 to 10% GLY inclusion and decreasing thereafter. As a proportion of N intake, urinary and fecal N excretion increased linearly (P < 0.04) as GLY increased in the diet. Furthermore, grams of N retained and N retained as a percent of N intake both decreased linearly (P < 0.02) as GLY increased in the diet. Total DM digestibility tended (P < 0.10) to respond quadratically, increasing at a decreasing rate from 0 to 5% GLY inclusion. Overall, RE tended to decrease as GLY increased in the diet in conjunction with a decrease in N retention, which could indicate an increased metabolic cost to the animal associated with feeding GLY. Based on RE, the feeding value of GLY in high-concentrate diets is greater than DRC at 5 and 10% of DM but less at 15% of DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.