Abstract

Five crossbred beef cows (Hereford X Angus, 438 kg), cannulated in the rumen and duodenum, were used in a Latin square experiment to determine the effects of dietary proportions of bermudagrass (B) and clover (C) hays (0: 1, .25: .75, .5: .5, .75: .25 and 1: 0) on digestive function. Feed intake was 85% of ad libitum intake of B alone (1.35% of body weight). Bermudagrass contained 1.88% nitrogen (N), 79.6% neutral detergent fibre (NDF) and 5.2% acid detergent lignin (ADL), and C contained 2.30% N, 55.3% NDF and 6.3% ADL. Molar proportion of acetic increased linearly while propionic acid moved in the opposite direction as B replaced C (P less than .05). Mean particle size of duodenal digesta increased linearly (P less than .05) as B increased, but specific gravity of particles was constant (P greater than .10). Fluid passage rate decreased while volume increased linearly with increasing B (P less than .05) so that ruminal fluid outflow rate increased quadratically (P less than .10). Particulate passage rate ranged from 3.0 to 3.4% h. Apparent ruminal organic matter (OM) digestion was 69.0, 54.0, 53.0, 49.1 and 49.7% for 0, 25, 50, 75 and 100% B, respectively, decreasing quadratically as B rose (P less than .05). Postruminal OM digestibilities as percentages of intake and available OM changed quadratically (P less than .05) as dietary B increased, causing total tract OM digestion to decrease linearly (P less than .05; 73.8, 66.4, 63.1, 60.3 and 58.2% for 0, 25, 50, 75 and 100% B diets, respectively). Duodenal microbial-N flow increased quadratically with increasing B (P less than .05), being 45, 108, 103, 105 and 101 g/d, and microbial growth efficiency increased quadratically as well (P less than .05). True ruminal N disappearance ranged from 69.0 to 79.4% and was not affected by diet (P greater than .10). Ruminal digestibilities of fibre fractions were similar to OM. Little digestive function benefit was achieved by mixing warm season grass and legume hays in diets of maintenance-fed beef cows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call