Abstract
Pelleted total mixed ration (P-TMR) feeding, which has become a common practice in providing nutrition for fattening sheep, requires careful consideration of the balance between forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) to maintain proper rumen functions. The present study aimed to investigate the effects of the dietary FNDF/RDS ratio (FRR) on chewing activity, ruminal fermentation, ruminal microbes, and nutrient digestibility in Hu sheep fed a P-TMR diet. This study utilized eight ruminally cannulated male Hu sheep, following a 4 × 4 Latin square design with 31 d each period. Diets consisted of four FRR levels: 1.0 (high FNDF/RDS ratio, HFRR), 0.8 (middle high FNDF/RDS ratio, MHFRR), 0.6 (middle low FNDF/RDS ratio, MLFRR), and 0.4 (low FNDF/RDS ratio, LFRR). Reducing the dietary FRR levels resulted in a linear decrease in ruminal minimum pH and mean pH, while linearly increasing the duration and area of pH below 5.8 and 5.6, as well as the acidosis index. Sheep in the HFRR and MHFRR groups did not experience subacute ruminal acidosis (SARA), whereas sheep in another two groups did. The concentration of total volatile fatty acid and the molar ratios of propionate and valerate, as well as the concentrate of lactate in the rumen linearly increased with reducing dietary FRR, while the molar ratio of acetate and acetate to propionate ratio linearly decreased. The degradability of NDF and ADF for alfalfa hay has a quadratic response with reducing the dietary FRR. The apparent digestibility of dry matter, organic matter, neutral detergent fiber, and acid detergent fiber linearly decreased when the dietary FRR was reduced. In addition, reducing the dietary FRR caused a linear decrease in OTUs, Chao1, and Ace index of ruminal microflora. Reducing FRR in the diet increased the percentage of reads assigned as Firmicutes, but it decreased the percentage of reads assigned as Bacteroidetes in the rumen. At genus level, the percentage of reads assigned as Prevotella, Ruminococcus, Succinivibrio, and Butyrivibrio linearly decreased when the dietary FRR was reduced. The results of this study demonstrate that the dietary FRR of 0.8 is crucial in preventing the onset of SARA and promotes an enhanced richness of ruminal microbes and also improves fiber digestibility, which is a recommended dietary FRR reference when formulating P-TMR diets for sheep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.