Abstract

The present study assessed the effects of dietary arginine on antioxidant status and immunity involved in AMPK-NO signaling pathway in juvenile blunt snout bream. Fish were fed six practical diets with graded arginine levels ranging from 0.87% to 2.70% for 8 weeks. The results showed that compared with the control group (0.87% dietary arginine level), significantly higher mRNA levels of adenosine monophosphate activated protein kinase (AMPK) and nitric oxide synthetase (NOS), activities of total nitric oxide synthetase (T-NOS) and nitric oxide synthetase (iNOS), and plasma nitric oxide (NO) contents were observed in fish fed with 1.62%–2.70% dietary arginine levels. Significantly higher levels of NOS and iNOS were observed in fish fed with 1.62%–2.70% dietary arginine levels in enzyme-linked immune sorbent assay. At dietary arginine levels of 1.22%–2.70%, the mRNA levels of iNOS were significantly improved. Dietary arginine also significantly influenced plasma interleukin 8 (IL-8) and tumour necrosis factor-α (TNF-α) contents. Furthermore, dietary arginine significantly affected the activity and mRNA level of glutathione peroxidase (GPx), the mRNA levels of pro-inflammatory factor including IL-8 and TNF-α and plasma malondialdehyde (MDA) content. However, total superoxide dismutase (T-SOD) activity, plasma complement component 3 (C3) content, plasma immunoglobulin M (IgM) content, plasma interleukin 1β (IL-1β) content and the mRNA levels of copperzinc superoxide dismutase (Cu/Zn-SOD), manganese superoxide dismutase (Mn-SOD) and IL-1β were not significantly affected by dietary arginine. After Aeromonas hydrophila challenge, the death rate was significantly lowered in fish fed with 1.62%–1.96% dietary arginine levels. Furthermore, the mRNA levels of AMPK, NOS and iNOS, plasma NO content and the activities of T-NOS and iNOS showed an upward trend with increasing dietary arginine levels. Significantly higher levels of NOS and iNOS were observed in fish fed with 1.62%–2.70% dietary arginine levels in enzyme-linked immune sorbent assay. At dietary arginine levels of 1.96%–2.31%, T-SOD activities were significantly improved. Significantly higher GPx activities were observed in fish fed with 1.22%–2.70% dietary arginine levels. At dietary arginine levels of 1.22%–2.31%, the plasma TNF-α and IL-8 contents were significantly decreased. Significantly lower plasma IL-1β contents were observed in fish fed 1.62%–1.96% dietary arginine levels. Dietary arginine significantly influenced the mRNA levels of antioxidant and pro-inflammatory genes including Cu/Zn-SOD, Mn-SOD, GPx, IL-8, TNF-α and IL-1β. Significantly higher plasma C3 contents and significantly lower plasma MDA contents were observed in fish fed with 1.62%–1.96% arginine levels. Furthermore, plasma IgM contents were significantly improved at dietary arginine levels of 1.62%–2.31%. However, high dietary arginine group (2.70%) significantly improved the mRNA levels of pro-inflammatory genes including IL-8, TNF-α and IL-1β and plasma MDA, IL-8, TNF-α and IL-1β contents as compared with optimal dietary arginine levels (1.62% and 1.96%). The present results indicate that optimal arginine level (1.62% and 1.96%) could improve antioxidant capacity, immune response and weaken tissues inflammatory involved in arginine-AMPK-NO signaling pathway, while high arginine level resulted in excessive NO production, leading to increase oxidative stress damage and inflammatory response in juvenile blunt snout bream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call